248 research outputs found

    Librational response of a deformed 3-layer Titan perturbed by non-keplerian orbit and atmospheric couplings

    Full text link
    The analyses of Titan's gravity field obtained by Cassini space mission suggest the presence of an internal ocean beneath its icy surface. The characterization of the geophysical parameters of the icy shell and the ocean is important to constrain the evolution models of Titan. The knowledge of the librations, that are periodic oscillations around a uniform rotational motion, can bring piece of information on the interior parameters. The objective of this paper is to study the librational response in longitude from an analytical approach for Titan composed of a deep atmosphere, an elastic icy shell, an internal ocean, and an elastic rocky core perturbed by the gravitational interactions with Saturn. We start from the librational equations developed for a rigid satellite in synchronous spin-orbit resonance. We introduce explicitly the atmospheric torque acting on the surface computed from the Titan IPSL GCM (Institut Pierre Simon Laplace General Circulation Model) and the periodic deformations of elastic solid layers due to the tides. We investigate the librational response for various interior models in order to compare and to identify the influence of the geophysical parameters and the impact of the elasticity. The main librations arise at two well-separated forcing frequency ranges: low forcing frequencies dominated by the Saturnian annual and semi-annual frequencies, and a high forcing frequency regime dominated by Titan's orbital frequency around Saturn. We find that internal structure models including an internal ocean with elastic solid layers lead to the same order of libration amplitude than the oceanless models, which makes more challenging to differentiate them by the interpretation of librational motion.Comment: 38 pages, 4 figures. Accepted for publication in Planetary and Space Scienc

    The rotation of Mimas

    Full text link
    The Cassini mission in the Saturnian system is an outstanding opportunity to improve our knowledge of the satellites of Saturn. The data obtained thanks to this mission must be confronted to theoretical models. This paper aims at modeling the rotation of Mimas, with respect to its possible internal structure. For that, we first build different interior models, in considering Mimas as composed of 2 rigid layers with different porosity. Then we simulate the rotational behavior of these models in a 3-degree of freedom numerical code, in considering complete ephemerides of a Mimas whose rotation is disturbed by Saturn. We also estimate the deviation of its longitudinal orientation due to tides. We expect a signature of the internal structure up to 0.53{\deg} in the longitudinal librations and an obliquity between 2 and 3 arcmin, the exact values depending on the interior. The longitudinal librations should be detectable, inverting them to get clues on the internal structure of Mimas is challenging

    Analytical description of physical librations of Saturnian coorbital satellites Janus and Epimetheus

    Full text link
    Janus and Epimetheus are famously known for their distinctive horseshoe-shaped orbits resulting from a 1:1 orbital resonance. Every four years these two satellites swap their orbits by a few tens of kilometers as a result of their close encounter. Recently Tiscareno et al. (2009) have proposed a model of rotation based on images from the Cassini orbiter. These authors inferred the amplitude of rotational librational motion in longitude at the orbital period by fitting a shape model to the recent Cassini ISS images. By a quasiperiodic approximation of the orbital motion, we describe how the orbital swap impacts the rotation of the satellites. To that purpose, we have developed a formalism based on quasi-periodic series with long and short-period librations. In this framework, the amplitude of the libration at the orbital period is found proportional to a term accounting for the orbital swap. We checked the analytical quasi-periodic development by performing a numerical simulation and find both results in good agreement. To complete this study, the results regarding the short-period librations are studied with the help of an adiabatic-like approach

    Conditions of Dynamical Stability for the HD 160691 Planetary System

    Full text link
    The orbits in the HD 160691 planetary system at first appeared highly unstable, but using the MEGNO and FLI techniques of global dynamics analysis in the orbital parameter space we have found a stabilizing mechanism that could be the key to its existence. In order to be dynamically stable, the HD 160691 planetary system has to satisfy the following conditions: (1) a 2:1 mean motion resonance, combined with (2) an apsidal secular resonance in (3) a configuration Pc(ap)SPb(ap)P_{c}(ap) - S - P_{b}(ap) where the two apsidal lines are anti-aligned, and (4) specific conditions on the respective sizes of the eccentricities (high eccentricity for the outer orbit is in particular the most probable necessary condition). More generally, in this original orbital topology, where the resonance variables θ1\theta_{1} and θ3\theta_{3} librate about 180180^{\circ} while θ2\theta_{2} librates about 00^{\circ}, the HD 160691 system and its mechanism have revealed aspects of the 2:1 orbital resonances that have not been observed nor analyzed before. The present topology combined with the 2:1 resonance is indeed more wide-ranging than the particular case of the HD 160691 planetary system. It is a new theoretical possibility suitable for a stable regime despite relatively small semi-major axes with respect to the important masses in interactions.Comment: 21 pages, 8 figures, 1 table, accepted version to ApJ (31 Jul 2003

    Global dynamics and stability limits for planetary systems around HD 12661, HD 38529, HD 37124 and HD 160691

    Get PDF
    In order to distinguish between regular and chaotic planetary orbits we apply a new technique called MEGNO in a wide neighbourhood of orbital parameters determined using standard two-body Keplerian fits for HD 12661, HD 38529, HD 37124 and HD 160691 planetary systems. We show that the currently announced orbital parameters place these systems in very different situations from the point of view of dynamical stability. While HD 38529 and HD 37124 are located within large stability zones in the phase space around their determined orbits, the preliminary orbits in HD 160691 are highly unstable. The orbital parameters of the HD 12661 planets are located in a border region between stable and unstable dynamical regimes, so while its currently determined orbital parameters produce stable regular orbits, a minor change within the margin of error of just one parameter may result in a chaotic dynamical system.Comment: 12 pages, 3 figures, accepted ApJ, revised version following the referee's repor

    Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn

    Get PDF
    The Cassini spacecraft collects high resolution images of the saturnian satellites and reveals the surface of these new worlds. The shape and rotation of the satellites can be determined from the Cassini Imaging Science Subsystem data, employing limb coordinates and stereogrammetric control points. This is the case for Epimetheus (Tiscareno et al. 2009) that opens elaboration of new rotational models (Tiscareno et al. 2009; Noyelles 2010; Robutel et al. 2011). Especially, Epimetheus is characterized by its horseshoe shape orbit and the presence of the swap is essential to introduce explicitly into rotational models. During its journey in the saturnian system, Cassini spacecraft accumulates the observational data of the other satellites and it will be possible to determine the rotational parameters of several of them. To prepare these future observations, we built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L_4 and L_5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital of Dione. The goal of this study is to understand how the departure from the Keplerian motion induced by the perturbations of the coorbital body, influences the rotation of these satellites. To this aim, we introduce explicitly the perturbation in the rotational equations by using the formalism developed by Erdi (1977) to represent the coorbital motions, and so we describe the rotational motion of the coorbitals, Janus and Epimetheus included, in compact form
    corecore